(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
bin(x, 0) → s(0)
bin(0, s(y)) → 0
bin(s(x), s(y)) → +(bin(x, s(y)), bin(x, y))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
bin(x, 0') → s(0')
bin(0', s(y)) → 0'
bin(s(x), s(y)) → +'(bin(x, s(y)), bin(x, y))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
bin(x, 0') → s(0')
bin(0', s(y)) → 0'
bin(s(x), s(y)) → +'(bin(x, s(y)), bin(x, y))
Types:
bin :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
bin
(6) Obligation:
Innermost TRS:
Rules:
bin(
x,
0') →
s(
0')
bin(
0',
s(
y)) →
0'bin(
s(
x),
s(
y)) →
+'(
bin(
x,
s(
y)),
bin(
x,
y))
Types:
bin :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
The following defined symbols remain to be analysed:
bin
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
bin(
gen_0':s:+'2_0(
+(
1,
n4_0)),
gen_0':s:+'2_0(
1)) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
bin(gen_0':s:+'2_0(+(1, 0)), gen_0':s:+'2_0(1))
Induction Step:
bin(gen_0':s:+'2_0(+(1, +(n4_0, 1))), gen_0':s:+'2_0(1)) →RΩ(1)
+'(bin(gen_0':s:+'2_0(+(1, n4_0)), s(gen_0':s:+'2_0(0))), bin(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(0))) →IH
+'(*3_0, bin(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(0))) →RΩ(1)
+'(*3_0, s(0'))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
bin(
x,
0') →
s(
0')
bin(
0',
s(
y)) →
0'bin(
s(
x),
s(
y)) →
+'(
bin(
x,
s(
y)),
bin(
x,
y))
Types:
bin :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
bin(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(1)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
bin(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(1)) → *3_0, rt ∈ Ω(n40)
(11) BOUNDS(n^1, INF)
(12) Obligation:
Innermost TRS:
Rules:
bin(
x,
0') →
s(
0')
bin(
0',
s(
y)) →
0'bin(
s(
x),
s(
y)) →
+'(
bin(
x,
s(
y)),
bin(
x,
y))
Types:
bin :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
bin(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(1)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
bin(gen_0':s:+'2_0(+(1, n4_0)), gen_0':s:+'2_0(1)) → *3_0, rt ∈ Ω(n40)
(14) BOUNDS(n^1, INF)